Characterizing optical chirality
نویسندگان
چکیده
We examine the recently introduced measure of chirality of a monochromatic optical field [Y. Tang and A. E. Cohen, Phys. Rev. Lett. 104, 163901 (2010)] using the momentum (plane-wave) representation and helicity basis. Our analysis clarifies the physical meaning of the measure of chirality and unveils its close relation to the polarization helicity, spin angular momentum, energy density, and Poynting energy flow. We derive the operators of the optical chirality and of the corresponding chiral momentum, which acquire remarkably simple forms in the helicity representation.
منابع مشابه
Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملCharacterizing films of polyethylene blends: An application of colorimetric parameters measurements
This study reports an application of instrumental color measurement for quantifying and comparing the optical properties of high density polyethylene HDPE and low density polyethylene LDPE blend films and the effect of blending ratio and miscibility on these properties. The technique of spectrophotometry in transmission and reflectance modes can be used as a versatile tool to evaluate the color...
متن کاملTheoretical study of magnetic susceptibility and optical activity of small molecules containing one chiral center
In the first part of this work, correlation between optical activity and elements of magnetic susceptibility tensor (MST) for five classes of model small molecules containing a single chiral center has been studied using quantum computational techniques at DFT-B3LYP level of theory with 6-311G basis set. Several molecular properties are used to reduce the MST elements prior to the examination o...
متن کاملTailoring Enhanced Optical Chirality: Design Principles for Chiral Plasmonic Nanostructures
Electromagnetic fields with strong optical chirality can be formed in the near field of chiral plasmonic nanostructures. We calculate and visualize the degree of chirality to identify regions with relatively high values. This analysis leads to design principles for a simple utilization of chiral fields. We investigate planar geometries, which offer a convenient way to access the designated fiel...
متن کاملSystematic determination of absolute absorption cross-section of individual carbon nanotubes.
Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic in...
متن کامل